hp Finite Element Methods for Fourth Order Singularly Perturbed Boundary Value Problems

نویسندگان

  • Christos Xenophontos
  • Jens Markus Melenk
  • Niall Madden
  • Lisa Oberbroeckling
  • Pandelitsa Panaseti
  • Antri Zouvani
چکیده

We consider fourth order singularly perturbed boundary value problems (BVPs) in one-dimension and the approximation of their solution by the hp version of the Finite Element Method (FEM). If the given problem’s boundary conditions are suitable for writing the BVP as a second order system, then we construct an hp FEM on the so-called Spectral Boundary Layer Mesh that gives a robust approximation that converges exponentially in the energy norm, provided the data of the problem is analytic. We also consider the case when the BVP is not written as a second order system and the approximation belongs to a finite dimensional subspace of the Sobolev space H. For this case we construct suitable C1−conforming hierarchical basis functions for the approximation and we again illustrate that the hp FEM on the Spectral Boundary Layer Mesh yields a robust approximation that converges exponentially. A numerical example that validates the theory is also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

An efficient numerical method for singularly perturbed second order ordinary differential equation

In this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer. A fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. Thomas algorithm is used to solve the tri-diagonal system. The stability of the algorithm is investigated. It ...

متن کامل

Numerical method for a system of second order singularly perturbed turning point problems

In this paper, a parameter uniform numerical method based on Shishkin mesh is suggested to solve a system of second order singularly perturbed differential equations with a turning point exhibiting boundary layers. It is assumed that both equations have a turning point at the same point. An appropriate piecewise uniform mesh is considered and a classical finite difference scheme is applied on t...

متن کامل

On the hp Finite Element Method for Singularly Perturbed Two-Point Boundary Value Problems

In this work, a singularly perturbed two-point boundary value problem of convection-diiusion type is considered. A hp version nite element method on a strongly graded piecewise uniform mesh of Shishkin type is used to solve the model problem. With the analytic assumption of the input data, it is shown that the method converges exponentially and the convergence is uniformly valid with respect to...

متن کامل

Robust Approximation of Singularly Perturbed Delay Differential Equations by the hp Finite Element Method

We consider the finite element approximation of the solution to a singularly perturbed second order differential equation with a constant delay. The boundary value problem can be cast as a singularly perturbed transmission problem, whose solution may be decomposed into a smooth part, a boundary layer part, an interior/interface layer part and a remainder. Upon discussing the regularity of each ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012